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Abstract: - In this paper we apply some signal processing methods to detect and classify specific patterns 

present in EEG signal, which give information about the inset of brain disorders, in particular epileptic 

activity.  We analyze EEG signals using spectral analysis methods, namely Short-Time Fourier Transform 

and Discrete Wavelet Transform, applied to several sets of EEG recordings. The spectrograms and wavelet 

decompositions and spectra are shown for a few EEG sequences with typical pathological patterns, to prove 

the possibility of classification based on EEG spectrum. 
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1 Introduction 
The electroencephalographic (EEG) signal obtained 

from scalp surface electrodes results as the sum of a 

large number of potentials originating from neurons 

located in various regions of the brain. EEG has 

been intensely studied due to valuable information 

it provides about normal brain and in the diagnosis 

of some brain disorders as for instance epileptic 

activity, seizures and even encephalopathies, 

dementia and Alzheimer disease [1]. Normally, 

surface EEG amplitudes are in the range 

10 100μV , while in seizure they can reach even 

1000μV . EEG signals can be analyzed with 

various signal processing methods, both in time and 

frequency domains [2]. Brain waves are usually 

classified into four basic groups: beta (14–30 Hz) is 

associated with active thinking and attention, alpha 

(8–13 Hz) is induced by a relaxed state and lack of 

attention, theta (4–7 Hz) indicates emotional stress, 

delta (0.1–4 Hz) appears mainly in deep sleep. 

Although EEG signal is always a superposition of 

brain waves, one wave will be dominant at a given 

moment. Morphologically, various shapes of 

patterns appear in normal EEG or various brain 

disorders. We can identify waveforms with typical 

event-type patterns like K complex, V waves,  - 

waves,  - rhythm, spike-wave complex [3]. An 

efficient analysis tool is the spectrogram, which can 

be successfully used in EEG pattern classification 

systems [4]. In recent years, the wavelet transform 

[5] has also been widely used for EEG analysis, due 

to its multi-resolution properties [6]-[8]. Some 

recent and relevant papers approaching the issue of 

epileptic seizure prediction or detection using 

various signal processing and machine learning 

methods are [9]-[12]. A time-domain approach to 

detect frequencies, frequency couplings, and phases 

using nonlinear correlation functions for short and 

sparse time series like EEG was given in [13]. The 

EEG energy distribution was studied in [14].  

The aim of this paper is to make a comparative 

analysis of these spectral methods applied to 

epileptic EEG signals, to investigate and compare 

their feature extraction capabilities, useful in 

classification systems. 

 

 

2 Signal Processing Methods for the  

Analysis of Epileptic Brain Activity  
Next we will apply to a set of EEG recordings two 

efficient signal processing methods, namely Short-

Time Fourier Transform (STFT) and Discrete 

Wavelet Transform (DWT) with multi-resolution 

signal decomposition and we make a comparative 

analysis of results from the signal classification 

point of view. These analyses were performed on a 

set of EEG signals with various rhythms indicating 

seizures or epileptiform brain activity, from a 

publicly available database [15]. 
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2.1 Short Time Fourier Transform. 

Spectrogram. 
For highly non-stationary signals like EEG, a 

suitable analysis technique is Short-Time Fourier 

Transform (STFT), which shows the variation of 

spectral components over time. In the discrete-time 

version implemented in computer programs, the 

signal is divided into frames, with a specified 

degree of overlapping to reduce boundary effects. 

For each signal frame the discrete Fourier transform 

is calculated. Mathematically, the discrete-time 

STFT is formulated as: 

STFT{ [ ]}( , ) ( , )

                      [ ] [ ] j n
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s n m S m

s n w n m e 
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where [ ]w n  is the window function, usually a 

discrete Hann or Gaussian window centered around 

zero, and [ ]s n  is the sampled signal to be 

transformed. The squared magnitude 
2

( , )S m   of 

the STFT yields the spectrogram of the signal, 

which is a surface representation of the frequency 

spectrum as it varies in time. The spectrogram gives 

comprehensive information about non-stationary 

signals like voice, biomedical signals etc., although 

it has a fixed resolution, unlike the wavelet 

transform. The analysis window is essential in 

STFT. If it has a longer duration in time, it 

corresponds to a narrow band-pass filter in the 

frequency domain, so it performs a fine sampling 

on frequency axis; the STFT plot has high 

resolution details, retaining fine variations in the 

frequency content of the signal, while rapid 

changes in time are smoothed away due to 

averaging. On the contrary, a shorter window 

preserves rapid variations in time, but fails to detect 

quick frequency variations. This time-frequency 

trade-off is known in signal theory as the 

uncertainty principle. The spectrogram shows time 

and frequency localization simultaneously, 

especially for sudden changes of rhythms or shapes 

occurring in EEG. In Fig.1 two typical epileptiform 

EEG rhythms, namely spike-wave and  - rhythm 

are shown, with their logarithmic power spectrum. 

As is well known for highly non-stationary signals 

like EEG, the Fourier Transform (FFT) does not 

give relevant information about frequency  

 

    
(a) (b) 

Fig. 1. Signal sequences and power spectra for EEG with: (a) spike-and-wave complex; (b)  -wave. 

  

  

  
(a) (b) 

Fig. 2. Waveforms and spectrograms for EEG with multiple spikes, spike-and-wave complex etc. 
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(a) (b) 

Fig. 3. Waveforms and spectrograms for EEG with spike-and-wave complex,  - rhythm etc. 

  

  

  
(a) (b) 

Fig. 4. Waveforms and spectrograms for EEG with simple wave rhythm 

 

localization. Although the two rhythms are visually 

very distinct, the spectra look practically similar, 

therefore FFT does not yield any relevant 

information regarding the brainwave shape.  

An EEG spectrogram can be fed as input data into a 

pattern recognition system [4] and therefore the 

EEG patterns can be classified based on their 

spectrograms, interpreted as images. 

For each typical epileptic EEG waveform in Fig.2, 

Fig.3 and Fig.4, two spectrograms are calculated, 

one with narrow window (16 samples, with a 

duration of 100 ms), and another one with wide 

window (256 samples corresponding to a duration 

of 1.5 s). The spectrograms are displayed 

synchronized with waveforms, in order to highlight 

the time localization capability of STFT. When 

using a narrow window, the spikes or other quick 

variations in the EEG sequence appear also in the 

spectrogram at the exact moments of time, while 

the spectral components are not steady in time.  

For instance, in the case of the simple brain wave 

shown in Fig.4(a), the narrow-window spectrogram 
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resembles the signal itself, whereas the wide-

window spectrogram shows steady frequency 

components (fundamental and 4 harmonics). For 

the EEG wave in Fig.3(b), with  -rhythm, the 

wide-window spectrogram shows in the first 3 

seconds a pronounced fundamental and 6-7 

harmonics, more or less steady in time. For the rest 

of the sequence, the  - rhythm alternates with 

burst discharges, so spectral lines mix up, becoming 

indistinguishable. For a relatively regular wave 

with double peaks as the one shown in Fig.4 (b), 

the wide-window spectrogram shows a steady 

fundamental and the third harmonic, while other 

harmonics are blurred or interrupted. For the 

sequences in Fig.2 (a), (b) containing successive 

spike-and-wave complexes, the wide-window 

spectrogram shows an almost continuous spectrum 

at lower frequencies with intervals of visible 

separate lines. There is a steady frequency 

component at about 0.6 (in normalized values), 

corresponding to the burst discharge. 

 

2.2 Multi-Resolution Signal Decomposition 

Using Discrete Wavelet Transform 
The Discrete Wavelet Transform (DWT) is a very 

useful tool in EEG analysis, as it captures transient 

features and localizes them accurately both in time 

and frequency. The continuous wavelet transform 

of a signal ( )x t  is given by the following integral, 

where a and b are the translation and scale 

parameters, respectively: 

ψ 1 2

xW ( , ) ( ) d
t b

a b a x t t
a








 
   

 
              (2) 

 

while ( )t  is the mother wavelet and , ( )a b t  is a 

wavelet basis function. Using MATLAB, we can 

perform a multilevel decomposition of a given 

signal and obtain its approximation and details. Fig. 

5(a) shows a 3-level wavelet decomposition 

pyramid, performing multi-resolution analysis. The 

signal [ ]x n  passes through two complementary 

(low-pass and high-pass) filters and is decomposed 

successively, at each level, into a set of 

approximations (high-scale, low-frequency 

components) and details (low-scale, high frequency 

components). The Daubechies orthogonal wavelets 

[5] are very suitable for EEG analysis. Here we 

have chosen the Daubechies wavelet of order 8 

(db8) as it is smoother and gives sharper frequency 

resolution. The Daubechies scaling functions and 

wavelets of order 4 and 8 (db4, db8) are plotted for 

comparison in Fig.5 (b) and (c). In the 5-level 

decomposition, the signal S is reconstructed by 

adding all components (approximation and details), 

5 5 4 3 2 1S A D D D D D      . In Fig. 6, two 

EEG sequences, simple wave and spike-wave (each 

of duration 6 sec.), and their 5-level decompositions 

are shown, using the Daubechies db8 wavelet. The 

coarse approximation A5 (lowest frequencies) and 

details D5, D4, D3 (with higher frequencies), along 

with their spectra (limited to 40 Hz) are given.  

The spectra of A5, D5, D4, D3 have their energy 

concentrated roughly within the frequency bands of 

main brain rhythms [14]. Thus, components of A5 

are within  - range (1-4 Hz), D5 within   - range 

(4-8 Hz), D4 within   - range (8-13 Hz) while D3 

falls within   range (14-30 Hz). As can be seen  

 
(a) 

    
(b) (c) 

Fig. 5. (a) 3-level decomposition scheme using multiresolution analysis; (b), (c) plots of continuous scaling function 

and wavelet for Daubechies wavelets db4 and db8 
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Fig. 6. 5-level decomposition of two epileptic signals: simple wave (left) and spike-wave (right); the amplitude is 

in μV and time in number of samples; the spectrum horizontal axis is in Hz. 

    

    

    

    
Fig. 7. Typical EEG rhythms and the corresponding relative band energy ratios 

 
from Fig.6, the spectra shapes vary with the 

particular sequence of EEG signal, but essentially 

their supports correspond to bandwidths of the main 

brain waves. The lower level details D2, D1 with 

higher frequencies are less relevant and are treated 

as noise, having negligible amplitudes. 

For a quantitative analysis, the relative power of a 

frequency band with respect to the whole spectrum 

can be computed. In order to evaluate the relative 

energy of a frequency band we use the Parseval 

theorem which states that the energy of frequency 

components in the spectrum is equal to the energy
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contained in a waveform summed over time; in the 

discrete case this is expressed as: 

2 2

1 1

1
[ ] [ ]

N N

n k

x n X k
N 

                             (3) 

We define the relative energy Bi  of band i with 

respect to the energy of the whole spectrum SP  as 

the ratio SP Bi SPR Ε Ε and is equal according to 

(3) to the ratio AN/S NR ΕA ΕS , where 

2

N N j

1

ΕA A
N

j

  is the energy of the coefficients 

of approximation of order N, and 
2

N j

1

ΕS S
N

j

  is 

the signal energy (sum of squared samples). We 

also define the ratio DN/S NR ΕD ΕS , where 

2

N Nj

1

ΕD D
N

j

  is the energy of N-order details. 

 

 
Using a function written in MATLAB we have 

calculated these relative band energy ratios for the 

set of EEG signals. This analysis shows statistically 

that a given EEG pattern can be characterized by 

certain values of the relative band energy ratios, 

which sum up to 1. Such an energy measure was 

used in [14] to train a neural network for EEG 

recognition. Typical EEG epileptical rhythms are 

shown in Fig.7, with their relative band energy 

ratios given as bar plots. In the first 3 examples the 

energy corresponding to approximation A5 is 

predominant (50-75%), while for the others, the 

details D5, D4 and D3 may be predominant, 

indicating more rapid rhythms. On the set of 

analyzed EEG sequences, it results that the 

predominant energy corresponds to components as 

follows: A5 (24%), D5 (15%), D4 (42%) and D3 

(19%). These classes roughly contain signals with 

main rhythms shown in Fig.7. Therefore, energy 

band plots as those displayed in Fig.7 can be used 

in classification tasks with pattern recognition 

systems.  Table 1 contains a classification of typical 

EEG rhythms based on the dominant relative 

energy band (of the approximation A5 and details 

D3-D5). The mean and standard deviation of values 

A5/SR  and D j /SR  (j=3, 4, 5) are calculated for each 

class of EEG rhythms in which one component is 

dominant (A5, D5, D4 or D3). The values from 

Table 1 indicate a significantly higher energy band 

ratio for each dominant component compared to the 

others. 

 

3 Conclusion 
Both the spectrogram and multi-resolution analysis 

are efficient methods for detecting patterns in 

epileptic brain activity. The spectrogram contains 

comprehensive information that can be treated as an 

image, with image processing techniques. The 

choice of appropriate window is essential in STFT 

as it finely tunes the time-frequency trade-off. The 

spectra of multi-resolution components and their 

relative band energies can be also used in EEG 

pattern classification. Two analysis methods were 

applied to a set of EEG signals with epileptiform 

patterns, and the typical spectrograms and spectra 

of multi-level components were highlighted. There 

is a visible relationship between the EEG rhythm 

and relative band energy distribution. Both methods 

approached are valuable analysis tools and can be 

used in EEG classification, as a very useful 

complementary aid in clinical diagnosis. 
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